A Borsuk-Ulam type theorem and its application to combinatorics

Yasuhiro Hara and Shiro Shoji

Department of Mathematics, Graduate School of Science, Osaka University

Let G be a simple graph and p,q integers satisfying $1 \leq q \leq p$. We denote by V(G) the vertices set of G. A (p,q)-coloring of G is a map $c: V(G) \to [p]$ such that $q \leq |c(x) - c(y)| \leq p - q$ for every edge xy of G. The circular chromatic number of G is

$$\chi_c(G) = \inf\{p/q \mid \text{There exists a } (p,q)\text{-coloring of } G\}.$$

As the ordinary chromatic number $\chi(G)$ is equal to

$$\min\{p \mid \text{There exists a } (p, 1)\text{-coloring of } G\},\$$

we easily see $\chi_c(G) \leq \chi(G)$. It has been known $\chi_c(G) > \chi(G) - 1$.

Let n and k be integers satisfying $n \ge 2k$. We denote by $\binom{[n]}{k}$ the collection of all subsets of [n] with cardinary k. The Kneser graph $KG_{n,k}$ for $n \ge 2k > 0$, has vertex set $\binom{[n]}{k}$ and any two vertices $u, v \in \binom{[n]}{k}$ are adjacent if and only if $u \cap v = \emptyset$.

In [4], Lovász proved $\chi(KG_{n,k}) = n - 2k + 2$ by using Borsuk-Ulam theorem. Chen proved the following theorem in [3].

Theorem 1 ([3])
$$\chi_c(KG_{n,k}) = \chi(KG_{n,k}) (= n - 2k + 2)$$

In this talk, we give a topological proof of this theorem.

Next we consider the chromatic number of multiple Kneser hypergraphs. Let r, k, m, n be positive integers where $r \geq 2$. Let $\pi = (P_1, \dots, P_m)$ be a partition of [n] and $\vec{s} = (s_1, \dots, s_m)$ a positive integer vector. The multiple Kneser hypergraph $KG^r(\pi; \vec{s}; k)$ is a r-uniform hypergraph with the vertex set

$$V := \{ A \subset [n] \mid |A| = k, \ 1 \leq \forall i \leq m; \ |A \cap P_i| \leq s_i \},$$

where $\{A_1, \ldots A_r\}$ is a hyperedge if A_1, \ldots, A_r are pairwise disjoint. We define the function $f_{2,\pi}$ as follows

$$f_{2,\pi}(P_i) := \min\{2s_i, |P_i|\}.$$

We set

$$M_{2,\pi} = \max \Big\{ 2k - 1 + \sum_{j=1}^{t} (|P_{i_j}| - f_{2,\pi}(P_{i_j})) \mid \sum_{j=1}^{t} f_{2,\pi}(P_{i_j}) \le 2k - 1 \Big\},$$

We give a topological proof of the following theorem which has been proved in [1].

Theorem 2 ([1])
$$\chi(KG^2(\pi; \vec{s}; k)) = n - M_{2,\pi} + 1$$

References

- [1] M. Alishahi and H. Hajiabolhassan, On the chromatic number of general Kneser hypergraphs, J. Combin. Theory Ser. B 115(2015), 186–209.
- [2] G. J. Chang, D. F. Liu and X. Zhu, A short proof for Chen's alternative Kneser coloring lemma. (English summary) J. Combin. Theory Ser. A 120 (2013), no. 1, 159–163.
- [3] P-A. Chen, A new coloring theorem of Kneser graphs., J. Combin. Theory Ser. A 118 (2011), 1062–1071.
- [4] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.