Affine definable $C^{\infty}G$ manifold structures in an o-minimal structure

1 Introduction

In this presentation, we consider an affine definable $C^{\infty}G$ manifold structure and its uniqueness of an affine definable C^r manifold when $1 \leq r < \infty$.

Let $\mathcal{M} = (, +, \cdot, <, \dots)$ be an o-minimal expansion of the standard structure of the field of real numbers.

The following fact is known.

Theorem 1 (1) If $0 \le r < \infty$, then every definable C^r manifold is affine (2005).

(2) If \mathcal{M} is exponential and G is an affine definable C^{∞} group, then each compact definable $C^{\infty}G$ manifold is affine (1999).

We say that \mathcal{M} is polynomially bounded if any definable function $f : \mathbb{R} \to \mathbb{R}$, there exist a positive integer N and $x_0 \in$ such that $|f(x)| < x^N$ for any $x > x_0$. If $e^x : \mathbb{R} \to \mathbb{R}$ is definable in \mathcal{M} , then \mathcal{M} is exponential.

Theorem 2 (Miller 1994) Every o-minimal expansion of the field of real numbers is either polynomially bounded or exponential.

The following is an approximation theorem.

²⁰¹⁰ Mathematics Subject Classification. 57S15, 14P20, 57R35, 58A07, 03C64.

Key Words and Phrases. Definable $C^{\infty}G$ manifolds, definable $C^{\infty}G$ maps, approximation theorem.

Theorem 3 (2017) If $0 \leq s < \infty$ and \mathcal{M} admits C^{∞} cell decomposition and exponential, then every definable C^sG map between affine definable $C^{\infty}G$ manifolds is approximated in the definable C^s topology by definable $C^{\infty}G$ maps.

Our main result is the following.

Theorem 4 (2017) Let X be an affine definable C^rG manifold and \mathcal{M} admits C^{∞} cell decomposition and exponential. If $1 \leq r < \infty$ then, X admits a unique affine definable $C^{\infty}G$ manifold structure up to definable $C^{\infty}G$ diffeomorphism.