A model for the K(n)-local stable homotopy category

Takeshi Torii

(Okayama University)

The K(n)-local stable homotopy category occupies an important position in chromatic homotopy theory that is a branch of stable homotopy theory, where K(n) is the Morava K-theory. For a spectrum X, we denote by $L_{K(n)}X$ the K(n)-localization of X. For a finite spectrum Y, we have the K(n)-local E_n -based Adams spectral sequence

$$E_2^{s,t} = H_c^s(\mathbb{G}_n; (E_n)_t(Y)) \Longrightarrow \pi_{t-s}(L_{K(n)}Y),$$

where E_n is the Morava *E*-theory and \mathbb{G}_n is the Morava stabilizer group. This suggests that the K(n)-local stable homotopy category be related to the derived category of \mathbb{G}_n equivariant E_n -modules. In this talk I am going to construct a model for the K(n)-local stable homotopy category by means of the Morava *E*-theory and the Morava stabilizer group.

Since the stabilizer group \mathbb{G}_n is a profinite group, we can consider the category $\Sigma \operatorname{Sp}(\mathbb{G}_n)$ of discrete symmetric \mathbb{G}_n -spectra which are constructed based on simplicial discrete \mathbb{G}_n sets. The category $\Sigma \operatorname{Sp}(\mathbb{G}_n)$ supports a model structure and we denote by $\Sigma \operatorname{Sp}(\mathbb{G}_n)_{K(n)}$ its left Bousfield localization with respect to K(n). We can construct a commutative monoid object $F_n \in \Sigma \operatorname{Sp}(\mathbb{G}_n)$ which satisfies $L_{K(n)}F_n \simeq E_n$.

Theorem 1 ([1]). The left Quillen functor

$$F_n \wedge (-) : \Sigma \operatorname{Sp}_{K(n)} \to \operatorname{Mod}_{F_n}(\Sigma \operatorname{Sp}(\mathbb{G}_n)_{K(n)})$$

is a Quillen equivalence. In particular, we see that the K(n)-local stable homotopy category $\operatorname{Ho}(\Sigma \operatorname{Sp}_{K(n)})$ is equivalent to the homotopy category of the model category $\operatorname{Mod}_{F_n}(\Sigma \operatorname{Sp}(\mathbb{G}_n)_{K(n)})$ (as tensor triangulated categories).

$$\operatorname{Ho}(\Sigma \operatorname{Sp}_{K(n)}) \simeq \operatorname{Ho}(\operatorname{Mod}_{F_n}(\Sigma \operatorname{Sp}(\mathbb{G}_n)_{K(n)}))$$

References

[1] T. Torii, On quasi-categories of comodules and Landweber exactness, preprint, arXiv:1612.03265.