Affine definable $C^{\infty}G$ manifold structures in an o-minimal structure

Tomohiro Kawakami

Wakayama University

November 17, 2017

Tomohiro Kawakami (Wakayama University)Affine definable $C^\infty G$ manifold structures i

Ordered fields

 A field (R, +, ·, <) with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.

Ordered fields

A field (R, +, ·, <) with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.
(1) For any x, y, z ∈ R, if x < y, then x + z < y + z.
(2) For any x, y, z ∈ R, if x < y and z > 0, then xz < yz.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies the following condition.

Real closed fields

An ordered field (R, +, ·, <) is a *real field* if it satisfies the following condition.

For any $y_1,\ldots,y_m\in R$, $y_1^2+\cdots+y_m^2=0\Rightarrow y_1=\cdots=y_m=0.$

Real closed fields

An ordered field (R, +, ·, <) is a *real field* if it satisfies the following condition.

For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0$. A real field $(R, +, \cdot, <)$ is a *real closed field* if it satisfies one of the following two equivalent conditions.

Real closed fields

An ordered field (R, +, ·, <) is a *real field* if it satisfies the following condition.

For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0$. A real field $(R, +, \cdot, <)$ is a *real closed field* if it satisfies one of the following two equivalent conditions. (1) [Intermediate value property] For every $f(x) \in R[x]$, if a < band $f(a) \neq f(b)$, then $f([a, b]_R)$ contains $[f(a), f(b)]_R$ if f(a) < f(b) or $[f(b), f(a)]_R$ if f(b) < f(a), where $[a, b]_R = \{x \in R | a \le x \le b\}$. (2) The ring $R[i] = R[x]/(x^2 + 1)$ is an algebraically closed field.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

 O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field $\mathbf{R} = (\mathbb{R}, +, \cdot, <)$ of real numbers.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field $\mathbf{R} = (\mathbb{R}, +, \cdot, <)$ of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field $\mathbf{R} = (\mathbb{R}, +, \cdot, <)$ of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field $\mathbf{R} = (\mathbb{R}, +, \cdot, <)$ of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field $\mathbf{R} = (\mathbb{R}, +, \cdot, <)$ of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2), and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

(5) $\mathbf{R}_{an,exp} := (\mathbb{R},+,\cdot,<,(f),exp)$, where (f) and exp denote as above.

• An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means $(a, b), -\infty \le a < b \le \infty$.

An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets.

An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.

- An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
 If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.
 - In this presentation, everything is considered in an exponential o-minimal expansion $\mathcal{N} = (\mathbb{R}, +, \cdot, <, e^x, \ldots,)$ with the C^{∞} cell decomposition of the field of real numbers $(\mathbb{R}, +, \cdot, <)$ unless otherwise stated.

Let X ⊂ ℝⁿ and Y ⊂ ℝ^m be definable sets. A continuous map f: X → Y is *definable* if the graph of f (⊂ X × Y ⊂ ℝⁿ × ℝ^m) is a definable set. A definable map f : X → Y is a *definable* homeomorphism if there exists a definable map f' : Y → X such that f ∘ f' = id_Y, f' ∘ f = id_X.

Let X ⊂ ℝⁿ and Y ⊂ ℝ^m be definable sets. A continuous map f: X → Y is definable if the graph of f (⊂ X × Y ⊂ ℝⁿ × ℝ^m) is a definable set. A definable map f: X → Y is a definable homeomorphism if there exists a definable map f': Y → X such that f ∘ f' = id_Y, f' ∘ f = id_X. Let G be a compact subgroup of GL_n(ℝ).

Let X ⊂ ℝⁿ and Y ⊂ ℝ^m be definable sets. A continuous map f: X → Y is definable if the graph of f (⊂ X × Y ⊂ ℝⁿ × ℝ^m) is a definable set. A definable map f: X → Y is a definable homeomorphism if there exists a definable map f': Y → X such that f ∘ f' = id_Y, f' ∘ f = id_X. Let G be a compact subgroup of GL_n(ℝ). A pair (X, φ) consisting a definable set X and a G action φ: G × X → X is a definable G set if φ is definable. We simply write X instead of (X, φ) and gx instead of φ(g, x). • Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is *definable* if the graph of $f (\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is a definable set. A definable map $f: X \to Y$ is a *definable* homeomorphism if there exists a definable map $f': Y \to X$ such that $f \circ f' = id_Y, f' \circ f = id_X$. Let G be a compact subgroup of $GL_n(\mathbb{R})$. A pair (X, ϕ) consisting a definable set X and a G action $\phi: G \times X \to X$ is a *definable* G set if ϕ is definable. We simply write X instead of (X, ϕ) and gx instead of $\phi(q, x)$. A definable map $f: X \to Y$ between definable G sets is a *definable* **G** map if for any $x \in X, g \in G$, f(gx) = gf(x). A definable G map is a *definable* G *homeomorphism* if it is a homeomorphism.

Definable $C^r G$ manifolds

- ٩
- A group homomorphism (resp. A group isomorphism) from G to O_n(ℝ) is a definable group homomorphism (resp. a definable group isomorphism) if it is a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^{∞} map (resp. a definable C^{∞} diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups.

Definable $C^r G$ manifolds

- ٥
- (1) A group homomorphism (resp. A group isomorphism) from G to $O_n(\mathbb{R})$ is a *definable group homomorphism* (resp. a *definable group isomorphism*) if it is a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^{∞} map (resp. a definable C^{∞} diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups.

- (2) An *n*-dimensional representation of G means ℝⁿ with the linear action induced by a definable group homomorphism from G to O_n(ℝ). In this paper, we assume that every representation of G is orthogonal.
- (3) A definable $C^r G$ manifold is a pair (X, α) consisting of a definable C^r manifold X and a group action α of G on X such that $\alpha : G \times X \to X$ is a definable C^r map. For simplicity of notation, we write X instead of (X, α) .

Definable $C^r G$ manifolds

- ٥
- (1) A group homomorphism (resp. A group isomorphism) from G to $O_n(\mathbb{R})$ is a *definable group homomorphism* (resp. a *definable group isomorphism*) if it is a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^{∞} map (resp. a definable C^{∞} diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups.

- (2) An *n*-dimensional representation of G means ℝⁿ with the linear action induced by a definable group homomorphism from G to O_n(ℝ). In this paper, we assume that every representation of G is orthogonal.
- (3) A definable $C^r G$ manifold is a pair (X, α) consisting of a definable C^r manifold X and a group action α of G on X such that $\alpha : G \times X \to X$ is a definable C^r map. For simplicity of notation, we write X instead of (X, α) .

- (4) A definable C^r submanifold of a definable C^rG manifold X is called a *definable* C^rG submanifold of X if it is G invariant.
- (5) A definable C^r map (resp. A definable C^r diffeomorphism, A definable homeomorphism, A definable map) is a definable C^rG map (resp. a definable C^rG diffeomorphism, a definable G homeomorphism, a definable G map) if it is a G map.
- (6) A definable $C^r G$ manifold is called *affine* if it is definably $C^r G$ diffeomorphic (definably G homeomorphic if r = 0) to a definable $C^r G$ submanifold of some representation of G.
- (7) A definable $C^r G$ manifold with boundary is defined similarly.

- (4) A definable C^r submanifold of a definable C^rG manifold X is called a *definable* C^rG submanifold of X if it is G invariant.
- (5) A definable C^r map (resp. A definable C^r diffeomorphism, A definable homeomorphism, A definable map) is a definable C^rG map (resp. a definable C^rG diffeomorphism, a definable G homeomorphism, a definable G map) if it is a G map.
- (6) A definable $C^r G$ manifold is called *affine* if it is definably $C^r G$ diffeomorphic (definably G homeomorphic if r = 0) to a definable $C^r G$ submanifold of some representation of G.
- (7) A definable $C^r G$ manifold with boundary is defined similarly.

- (4) A definable C^r submanifold of a definable C^rG manifold X is called a *definable* C^rG submanifold of X if it is G invariant.
- (5) A definable C^r map (resp. A definable C^r diffeomorphism, A definable homeomorphism, A definable map) is a definable C^rG map (resp. a definable C^rG diffeomorphism, a definable G homeomorphism, a definable G map) if it is a G map.
- (6) A definable $C^r G$ manifold is called *affine* if it is definably $C^r G$ diffeomorphic (definably G homeomorphic if r = 0) to a definable $C^r G$ submanifold of some representation of G.
- (7) A definable $C^r G$ manifold with boundary is defined similarly.

Theorem

(1) If $0 \le r < \infty$, then every definable C^r manifold is affine (2005). (2) If \mathcal{M} is exponential and G is a compact affine definable C^{∞} group, then each compact definable $C^{\infty}G$ manifold is affine (1999).

• (1) A singleton $\{a\}$ is a 0- C^r cell and an open interval (a, b) is a $1-C^r$ cell. (2) Let C be a $(i_1, \ldots i_n)$ cell and $f, h: C \to \mathbb{R} \cup \{\pm \infty\}$ with f(x) < h(x) for all $x \in C$. The graph of f is an $(i_1, \ldots, i_n, 0)$ cell. The band $\{(x, y) \in C \times \mathbb{R} | f(x) < y < h(x)\}$ is an $(i_1, \ldots, i_n, 1)$ cell. (3) A partition $\{(-\infty, a_0), (a_0, a_1), \dots, (a_n, \infty), \{a_1\}, \dots, \{a_n\}\}$ is a C^r cell *decomposition* of \mathbb{R} . (4) A Partition \mathcal{D} of \mathbb{R}^n is a C^r cell decomposition of \mathbb{R}^n if $\pi(\mathcal{D})$ is a C^r cell decomposition of \mathbb{R}^{n-1} , where $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ is the projection forgetting the last coordinate. (5) Let A_1, \ldots, A_k be definable subsets of \mathbb{R}^n . A a C^r cell decomposition \mathcal{D} of A_1, \ldots, A_k if for each $C \in \mathcal{D}$, $C \subset A_i$ or $C \cap A_i = \emptyset$

Theorem (van den Dries 1998)

Let A_1, \ldots, A_k be definable subsets of \mathbb{R}^n . Then there exists a C^r cell decomposition \mathcal{D} of A_1, \ldots, A_k .

We say that *M* admits a C[∞] cell decomposition if the above theorem is true when r = ∞.
 Remark that there exists an o-minimal structure which does not admit a C[∞] cell decomposition.

We say that \mathcal{M} is *polynomially bounded* if any definable function $f: \mathbb{R} \to \mathbb{R}$, there exist a positive integer N and $x_0 \in \mathbb{R}$ such that $|f(x)| < x^N$ for any $x > x_0$. If $e^x: \mathbb{R} \to \mathbb{R}$ is definable in \mathcal{M} , then \mathcal{M} is *exponential*.

Theorem (Miller 1994)

Every o-minimal expansion of the field of real numbers is either polynomially bounded or exponential.

Theorem (2017)

If $0 \leq s < \infty$ and \mathcal{M} admits C^{∞} cell decomposition and exponential, then every definable C^sG map between affine definable $C^{\infty}G$ manifolds is approximated in the definable C^s topology by definable $C^{\infty}G$ maps.

Our result

Theorem

Let X be an affine definable C^rG manifold and \mathcal{M} admits C^{∞} cell decomposition and exponential. If $1 \leq r < \infty$ then, X admits a unique affine definable $C^{\infty}G$ manifold structure up to definable $C^{\infty}G$ diffeomorphism.

Thank you very much.